Spectroelectrochemical Characterization of a Pyrazine-bridged Mixed-valent (4d⁵/4d⁶) Organometallic Analogue of the Creutz–Taube Ion

Wolfgang Bruns, # Wolfgang Kaim* # Eberhard Waldhör # and Michael Krejčik b

Institut f
ür Anorganische Chemie der Universit
ät, Pfaffenwaldring 55, D-70550 Stuttgart, Germany
 J. Heyrovsky Institute of Physical Chemistry and Electrochemistry, Czech Academy of Sciences, Dolejškova 3, CZ-182
 Prague, Czech Republic

The dinuclear complex ion *trans,mer*-[(PPri₃)₂(CO)₃Mo(μ -pz)Mo(CO)₃(PPri₃)₂]⁺ (pz = pyrazine), the closest yet reported organometallic analogue of the Creutz–Taube ion [(NH₃)₅Ru(μ -pz)Ru(NH₃)₅⁵⁺, has been characterized as a fully delocalized Mo^{0.5}/Mo^{0.5} system by electrochemistry, EPR, electronic and vibrational absorption spectroscopy.

Investigations of the Creutz–Taube ion $[(NH_3)_5Ru^{III}(\mu-pz)-Ru^{II}(NH_3)_5]^{5+}$ 1 and of related d⁵/d⁶ mixed-valent systems have been enormously fruitful for the understanding of electron transfer and charge delocalization phenomena.^{1,2} Attempts to produce similarly pyrazine-bridged organometallic d⁵/d⁶ analogues less susceptible to charge trapping by the solvent have long been unsuccessful because corresponding dinuclear complexes of M(CO)₅ fragments, M = Cr, Mo, W, are only irreversibly oxidized at high potentials.^{3,4} Pyrazinebridged dimers of the (C₅R₅)(CO)₂Mn fragments, on the other hand, suffer from a pronounced dissociative lability, which is caused by a small ligand-field splitting.⁴

In the course of studies of the H_2 -coordinating ability of $W(CO)_3(PR_3)_2$ fragments⁵ we have prepared the dinuclear

pyrazine complex *trans,mer*-[(PPri₃)₂(CO)₃ $W(\mu$ -pz) $W(CO)_3$ -(PPri₃)₂] **2** which exhibits facile oxidation to a stable and isolable W¹/W⁰ mixed-valent cation **2**⁺ the characteristics of which were described recently.⁶

For an even closer approach to the Creutz-Taube ion 1 with its formally $4d^{5/4}d^{6}$ mixed-valent formulation we now report results on the Mo¹/Mo⁰ analogue of 2 and 2⁺, *i.e.* on compound 3 and spectroelectrochemically generated 3⁺.

Complex 3 was synthesized from Mo(CO)₃(PPri₃)₂⁵ and pyrazine in toluene.[†] Despite the higher dissociative lability of the molybdenum system $3/3^+$ as compared with the tungsten analogues $2/2^+$, two electrochemically reversible one-electron oxidation processes were observed at +0.01 and -0.37 V vs. FeCp₂^{0/+} in THF-0.1 mol dm⁻³ Bu₄NClO₄. As in the Ru vs. Os series,^{1.7} the 4d⁵/4d⁶ system 3^+ thus exhibits a smaller stability constant $K_c = [d^5/d^6]^2/[d^5/d^5] \cdot [d^6/d^6] = 10^{\Delta E/59} \text{ mV} =$ $10^{6.4}$ than the analogous $5d^5/5d^6$ system 2^+ ($K_c = 10^{8.5}$) under the same conditions. Spectroelectrochemistry⁸ of 3^+ in CH₂Cl₂-0.1 mol dm⁻³ Bu₄NPF₆ showed an intense (ε ca. 7 × 10^3 mol⁻¹ dm³ cm⁻¹), relatively narrow ($\Delta \tilde{v}_{1/2}$ 700 cm⁻¹) symmetrical band at 2150 nm (4650 cm⁻¹) in the IR region.^{6c} Depending on the classification⁹ this band can be assigned to an intervalence transition (Mo⁰ \rightarrow Mo^I, localized model) or a $\pi \rightarrow \pi^*$ transition between delocalized molecular orbitals.

In contrast to the situation for the Creutz-Taube ion 1 where the question of (de)localization has long been controversially discussed owing to lack of good experimental

Fig. 2 IR spectra from oxidative spectroelectrochemistry of $3 (\rightarrow 3^+: 1962, 1898 \text{ and } 1871 \text{ cm}^{-1})$ in CH₂Cl₂-0.1 mol dm⁻³ Bu₄NPF₆. The marked (*) band is that of Mo(CO)₄(PPri₃)₂ which is slowly formed from non-oxidized 3 in solution (see ref. 5).

Fig. 1 EPR spectrum (a) of 3^+ at 298 K in CH₂Cl₂ (< g > 2.0438) with $^{95.97}$ Mo hyperfine coupling of 1.52 mT, the arrows indicate satellite lines from the combination with two equivalent magnetically active nuclei. (b) Computer simulated spectrum.

[†] Dark-green compound $[\lambda_{max} 867 \text{ nm}, \tilde{v}(CO) 1932, 1829 \text{ and } 1801 \text{ cm}^{-1} \text{ in } CH_2Cl_2]$, correct elemental analysis (C, H, N).

1; k = 5+, $ML_n = Ru(NH_3)_5$ 2; k = 0, $ML_n = W(CO)_3(P^iPr_3)_2$ 2*; k = 1+, $ML_n = W(CO)_3(P^iPr_3)_2$ 3; k = 0, $ML_n = Mo(CO)_3(P^iPr_3)_2$ 3*; k = 1+, $ML_n = Mo(CO)_3(P^iPr_3)_2$

criteria^{1.2} the organometallic species **3**⁺ offers two convenient lines of evidence for full delocalization. First, the EPR signal of **3**⁺ in CH₂Cl₂ solution at 298 K shows the presence of the coupling of one electron with two equivalent Mo nuclei (Fig. 1; ⁹⁵Mo: 15.72% natural abundance, I = 5/2; ⁹⁷Mo: 9.46%, I = 5/2). Both sets of satellite lines from the combinations with one (37.7%) and two magnetically active ^{95,97}Mo nuclei (6.3%) are observed (Fig. 1). Most significantly,^{10a} the ^{95,97}Mo coupling constant of 1.52 mT is only about half the 2.6 mT for the corresponding mononuclear Mo^I complex [(PPri₃)₂(CO)₃Mo(pz)]⁻. In glassy frozen dichloromethane, an axial EPR spectrum is obtained with g_{\parallel} 1.9755 and g_{\perp} 2.0655; anisotropic hyperfine coupling constants could not be determined with certainty.

Vibrational spectroscopy with an even shorter time window $(ca. 10^{-12} \text{ s})$ than EPR $(ca. 10^{-8} \text{ s})$ shows the expected high energy shifts of CO stretching bands upon oxidation, however, there is only one set of three shifted bands for the meridional CO groups in 3^+ (Fig. 2).

The molybdenum system 3^+ thus shows similar clear-cut evidence for a delocalized $M^{0.5}/M^{0.5}$ ground state (Class IIIA behaviour⁹) as the tungsten system 2^+ ;⁶ in contrast, a recent report¹¹ for a Mn^{II}/Mn^I carbonyl system showed partial valence trapping *via* the CO stretching band pattern. Summarizing, we have extended the small number of Mo^I/Mo⁰ mixed-valent dimers¹⁰ by an example that bears structural as 1869

well as spectroscopic resemblance to the prototypical Creutz-Taube ion.

Support from DFG (SFB 270 and Exchange Program with CAV) is gratefully acknowleged.

Received, 21st July 1993; Com. 3/04329K

References

- (a) C. Creutz and H. Taube, J. Am. Chem. Soc., 1973, 95, 1086;
 (b) P. A. Lay, R. H. Magnuson and H. Taube, Inorg. Chem., 1988, 27, 2364;
 (c) C. Creutz, Progr. Inorg. Chem., 1983, 30, 1.
- 2 Mixed Valency Systems—Applications in Chemistry, Physics and Biology, ed., K. Prassides, NATO ASI Series, 1991, C343.
- 3 (a) K. H. Panell and R. Iglesias, *Inorg. Chim. Acta*, 1979, 33, L161; (b) A. J. Lees, J. M. Fobare and E. F. Mattimore, *Inorg. Chem.*, 1984, 23, 2709.
- 4 (a) R. Goss and W. Kaim, Inorg. Chem., 1986, 25, 498; (b) W. Kaim, T. Roth, B. Olbrich-Deussner, R. Gross-Lannert, J. Jordanov and E. K. H. Roth, J. Am. Chem. Soc., 1992, 114, 5693.
- 5 H. J. Wasserman, G. J. Kubas and R. R. Ryan, J. Am. Chem. Soc., 1986, 108, 2294.
- 6 (a) W. Bruns and W. Kaim, J. Organomet. Chem., 1990, 390, C45;
 (b) W. Bruns and W. Kaim in ref. 2, p. 365; (c) W. Kaim, W. Bruns, J. Poppe and V. Kasack, J. Mol. Struct., 1993, 292, 221; (d) See also W. Bruns, H.-D. Hausen, W. Kaim and A. Schulz, J. Organomet. Chem., 1993, 444, 121.
- 7 W. Kaim and V. Kasack, Inorg. Chem., 1990, 29, 4696.
- 8 M. Krejcik, M. Danek and F. Hartl, J. Electroanal. Chem., 1991, 317, 179.
- 9 M. B. Robin and P. Day, Adv. Inorg. Chem. Radiochem., 1967, 10, 247.
- 10 (a) A. Das, J. C. Jeffery, J. P. Maher, J. A. McCleverty, E. Schatz, M. D. Ward and G. Wollermann, *Angew. Chem., Int. Ed. Engl.*, 1992, 31, 1515 and *Inorg. Chem.*, 1993, 32, 2145; (b) C. J. Casewit and M. C. Rakowski DuBois, *Rev. Inorg. Chem.*, 1988, 9, 199; (c) C. G. Young, *Coord. Chem., Rev.*, 1989, 96, 89.
- 11 C. G. Atwood, W. E. Geiger and A. L. Rheingold, J. Am. Chem. Soc., 1993, 115, 5310.