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The dinuclear complex ion tran~,mer-[(PPri~)~(CO)~Mo(~1-pz)Mo(CO)~(PPri~)*]+ (pz = pyrazine), the closest yet reported 
organometallic analogue of the Creutz-Taube ion [(NH3)5Ru(p-pz)Ru(NH3)5J5+, has been characterized as a fully 
delocalized Mo0.5/Mo0.5 system by electrochemistry, EPR, electronic and vibrational absorption spectroscopy. 

Investigations of the Creutz-Taube ion [(NH3)5RuIII(p-pz)- 
RuI*(NH3)5]5+ 1 and of related d51d6 mixed-valent systems 
have been enormously fruitful for the understanding of 
electron transfer and charge delocalization phenomena. 1.2 
Attempts to produce similarly pyrazine-bridged organometal- 
lic dVd6 analogues less susceptible to charge trapping by the 
solvent have long been unsuccessful because corresponding 
dinuclear complexes of M(CO)5 fragments, M = Cr, Mo, W, 
are only irreversibly oxidized at high potentials.3.4 Pyrazine- 
bridged dimers of the (C5RS)(C0)2Mn fragments, on the 
other hand, suffer from a pronounced dissociative lability, 
which is caused by a small ligand-field ~p l i t t i ng .~  

In the course of studies of the Hz-coordinating ability of 
W(C0)3(PR3)2 fragments5 we have prepared the dinuclear 
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Fig. 1 EPR spectrum (a )  of 3+ at 298 K in CHzC12 (<g> 2.0438) with 
95,97M~ hyperfine coupling of 1.52 mT, the arrows indicate satellite 
lines from the combination with two equivalent magnetically active 
nuclei. ( b )  Computer simulated spectrum. 

pyrazine complex trans, mer-[( PPri3)2(CO)3W( p - p ~ ) w ( C O ) ~ -  
( P P T ~ ~ ) ~ ]  2 which exhibits facile oxidation to a stable and 
isolable WVWO mixed-valent cation 2+ the characteristics of 
which were described recently.6 

For an even closer approach to the Creutz-Taube ion 1 with 
its formally 4d5/4d6 mixed-valent formulation we now report 
results on the MoVMoo analogue of 2 and 2+, i.e. on 
compound 3 and spectroelectrochemically generated 3+. 

Complex 3 was synthesized from M o ( C O ) ~ ( P P ~ ~ ~ ) ~ S  and 
pyrazine in to1uene.t Despite the higher dissociative lability of 
the molybdenum system 3/3+ as compared with the tungsten 
analogues 2/2+, two electrochemically reversible one-electron 
oxidation processes were observed at +0.01 and -0.37 V vs. 
FeCp201+ in THF-O.l mol dm-3 Bu4NC104. As in the Ru vs. 
0 s  series,l77 the 4d5/4d6 system 3+ thus exhibits a smaller 
stability constant K ,  = [ds/d6]2/[ds/d5].[d6/d6] = lO*N59 mV = 
106.4 than the analogous 5d515d6 system 2+ ( K ,  = 108.5) under 
the same conditions. Spectroelectrochemistry8 of 3+ in 
CH2Clz-0.1 mol dm-3 Bu4NPF6 showed an intense (E ca. 7 x 
103 mol-1 dm3 cm-I), relatively narrow (ATll2 700 cm-1) 
symmetrical band at 2150 nm (4650 cm-l) in the IR region.& 
Depending on the classification9 this band can be assigned to 
an intervalence transition (Moo + MoI, localized model) or a 
n 4 n* transition between delocalized molecular orbitals. 

In contrast to the situation for the Creutz-Taube ion 1 
where the question of (de)localization has long been con- 
troversially discussed owing to lack of good experimental 
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Fig. 2 IR spectra from oxidative spectroelectrochemistry of 3 (+ 3’: 
1962, 1898 and 1871 cm-1) in CH2CI2-O.1 mol dm-3 Bu4NPF6. The 
marked (*) band is that of Mo(CO).,(PPri3)? which is slowly formed 
from non-oxidized 3 in solution (see ref. 5). 

t Dark-green compound [Amax 867 nm, Q(C0)  1932, 1829 and 1801 
cm-1 in CH2Clz], correct elemental analysis (C, H,  N).  
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1 ; 
2; k = 0, ML, = W(CO)3(p(Pf& 
2+; k = I+, ML, = W(CO)3(P'Pr3)2 
3; k = 0, ML, = Mo(C0)3(Ph3)2 
3+; k = 1+, ML, = Mo(C0)3(Ph3)2 

k = 5+, ML, = Ru(NH3)s 

criteria172 the organometallic species 3f offers two convenient 
lines of evidence for full delocalization. First, the EPR signal 
of 3+ in CH2C12 solution at 298 K shows the presence of the 
coupling of one electron with two equivalent Mo nuclei (Fig. 
1; 95Mo: 15.72% natural abundance, I = 5/2; 97Mo: 9.46%, Z 
= 5/2). Both sets of satellite lines from the combinations with 
one (37.7%) and two magnetically active 95,97M0 nuclei 
(6.3%) are observed (Fig. 1). Most significantly,loU the 
95,97M0 coupling constant of 1.52 mT is only about half the 2.6 
mT for the corresponding mononuclear MoI complex 
[(PPri3)2(C0),Mo(pz)] - . In glassy frozen dichloromethane, 
an axial EPR spectrum is obtained with 811 1.9755 and g, 
2.0655; anisotropic hyperfine coupling constants could not be 
determined with certainty. 

Vibrational spectroscopy with an even shorter time window 
(ca. 10-12 s) than EPR (ca. 10-8 s) shows the expected high 
energy shifts of CO stretching bands upon oxidation, 
however, there is only one set of three shifted bands for the 
meridional CO groups in 3+ (Fig. 2). 

The molybdenum system 3+ thus shows similar clear-cut 
evidence for a delocalized MWM0.5 ground state (Class IIIA 
behaviourg) as the tungsten system 2+;6 in contrast, a recent 
report11 for a MnIVMnI carbonyl system showed partial 
valence trapping via the CO stretching band pattern. Sum- 
marizing, we have extended the small number of MoVMoO 
mixed-valent dimerslo by an example that bears structural as 

well as spectroscopic resemblance to the prototypical Creutz- 
Taube ion. 
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